Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50.420
Filter
1.
Mikrochim Acta ; 191(5): 294, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698253

ABSTRACT

Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.


Subject(s)
Ampicillin , Electrochemical Techniques , Fumonisins , Gold , Limit of Detection , Metal Nanoparticles , Titanium , Fumonisins/analysis , Gold/chemistry , Ampicillin/analysis , Ampicillin/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Titanium/chemistry , Biosensing Techniques/methods , Milk/chemistry , Anti-Bacterial Agents/analysis , Electrodes , Food Contamination/analysis , Animals
2.
Food Res Int ; 186: 114312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729688

ABSTRACT

Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.


Subject(s)
Food Microbiology , Gastrointestinal Tract , Listeria monocytogenes , Meat Products , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Meat Products/microbiology , Virulence , Gastrointestinal Tract/microbiology , Bile Acids and Salts/metabolism , Digestion , Food Contamination , Microbial Viability , Cell Membrane Permeability
3.
Food Res Int ; 186: 114318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729711

ABSTRACT

The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.


Subject(s)
Food Microbiology , Microbiota , Red Meat , Microbiota/genetics , Red Meat/microbiology , Animals , Cattle , Food Handling/methods , Bacteria/genetics , Bacteria/classification , Metagenomics/methods , Drug Resistance, Bacterial/genetics , Abattoirs , Anti-Bacterial Agents/pharmacology , Food Contamination/analysis , Drug Resistance, Microbial/genetics , Food Packaging
4.
Food Res Int ; 186: 114364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729726

ABSTRACT

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Subject(s)
Food Contamination , Triticum , Zearalenone , Zearalenone/analysis , Triticum/chemistry , Triticum/microbiology , Food Contamination/analysis , Bacillus megaterium/enzymology , Decontamination/methods , Food Microbiology , Food Handling/methods , Bacillus/enzymology , Seeds/chemistry , Seeds/microbiology , Microscopy, Electron, Scanning
5.
Environ Monit Assess ; 196(6): 529, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724861

ABSTRACT

Dioxins and dioxin-like polychlorinated biphenyls are a group of lipophilic compounds classified under persistent environmental pollutants (POPs). Significant sources of dioxin emissions include industrial effluents, open burning practices, and biomedical and municipal waste incinerators. These emissions will enter the food chain and accumulate in animal-origin foods (AOFs). A systematic review was conducted to analyze the global levels of dioxins and dioxin-like PCBs in AOFs using PRISMA guidelines 2020. The data on the dioxin contamination in AOFs were extracted from 53 publications based on their presence in eggs, meat and meat products, milk and dairy products, marine fish and fish products, and freshwater fish and crabs. A gap analysis was conducted based on the systematic review to understand the grey areas to be focused on the  future. No trend of dioxin contamination in AOFs was observed. A significant gap area was found in the need for nationwide data generation in countries without periodic monitoring of AOFs for dioxin contamination. Source apportionment studies need to be explored for the dioxin contamination of AOFs. Large-scale screening tests of AOFs using DR-CALUX based on market surveys are required for data generation. The outcomes of the study will be helpful for stakeholders and policyholders in framing new policies and guidelines for food safety in AOFs.


Subject(s)
Dioxins , Environmental Monitoring , Food Contamination , Polychlorinated Biphenyls , Dioxins/analysis , Polychlorinated Biphenyls/analysis , Animals , Food Contamination/analysis , Environmental Monitoring/methods , Meat/analysis , Environmental Pollutants/analysis , Persistent Organic Pollutants
6.
Sci Rep ; 14(1): 10426, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714752

ABSTRACT

Discriminating different cultivars of maca powder (MP) and detecting their authenticity after adulteration with potent adulterants such as maize and soy flour is a challenge that has not been studied with non-invasive techniques such as near infrared spectroscopy (NIRS). This study developed models to rapidly classify and predict 0, 10, 20, 30, 40, and 50% w/w of soybean and maize flour in red, black and yellow maca cultivars using a handheld spectrophotometer and chemometrics. Soy and maize adulteration of yellow MP was classified with better accuracy than in red MP, suggesting that red MP may be a more susceptible target for adulteration. Soy flour was discovered to be a more potent adulterant compared to maize flour. Using 18 different pretreatments, MP could be authenticated with R2CV in the range 0.91-0.95, RMSECV 6.81-9.16 g/,100 g and RPD 3.45-4.60. The results show the potential of NIRS for monitoring Maca quality.


Subject(s)
Machine Learning , Powders , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Zea mays/chemistry , Spectrophotometry/methods , Macau , Food Contamination/analysis , Glycine max/chemistry , Flour/analysis
7.
Environ Monit Assess ; 196(6): 547, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743188

ABSTRACT

Foodborne illnesses caused by the consumption of contaminated foods have frequent occurrences in developing countries. The incorporation of contaminated water in food processes, preparation, and serving is directly linked to several gastrointestinal infections. Keeping in view, this study was conducted to assess the microbial quality of both drinking water sources and commonly consumed fresh ready-to-eat (RTE) foods in the region. The drinking water samples from water sources and consumer points, as well as food samples from canteens, cafes, hotels, and restaurants, were collected for the microbiological analysis. Fifty-five percent (n = 286) of water samples were found to be positive for total coliforms with MPN counts ranging from 3 to 2600 (100 ml) -1. E. coli was detected in nearly 30% of the total water samples. Overall, 65% tap water samples were found unsatisfactory, followed by submersible (53%), filter (40%), and WTP (30%) sources. Furthermore, the examination of RTE foods (n = 80) found that 60% were of unsatisfactory microbial quality with high aerobic plate counts. The salads were the most contaminated category with highest mean APC 8.3 log CFU/g followed by pani puri, chats, and chutneys. Presence of coliforms and common enteropathogens was observed in both water and food samples. The detected isolates from the samples were identified as Enterobacter spp., Klebsiella spp., Pseudomonas aeruginosa, Salmonella spp., Shigella spp., and Staphylococcus spp. Based on these findings, microbiological quality was found compromised and this may pose hazard to public health. This exploratory study in the Punjab region also suggests that poor microbiological quality of water sources can be an important source of contamination for fresh uncooked RTE foods, thus transferring pathogens to the food chain. Therefore, only safe potable drinking water post-treatment should be used at all stages.


Subject(s)
Drinking Water , Fast Foods , Food Microbiology , Water Microbiology , Drinking Water/microbiology , India , Fast Foods/microbiology , Bacteria/isolation & purification , Bacteria/classification , Food Contamination/analysis , Environmental Monitoring , Humans , Escherichia coli/isolation & purification
9.
PLoS One ; 19(5): e0303305, 2024.
Article in English | MEDLINE | ID: mdl-38743648

ABSTRACT

The study aimed to assess the level of potentially toxic elements (As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni) and associated health implications through commonly consumed rice cultivars of Bangladesh available in Capital city, Dhaka. The range of As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni in rice grains were 0.04-0.35, 0.01-0.15, 0.01-1.18, 10.74-34.35, 1.98-13.42, 0.18-1.43, 2.51-22.08, and 0.21-5.96 mg/kg fresh weight (FW), respectively. The principal component analysis (PCA) identified substantial anthropogenic activities to be responsible for these elements in rice grains. The estimated daily intake (EDI) of the elements was below the maximum tolerable daily intake (MTDI) level. The hazard index (HI) was above the threshold level, stating non-carcinogenic health hazards from consuming these rice cultivars. The mean target cancer risk (TCR) of As and Pb exceeded the USEPA acceptable level (10-6), revealing carcinogenic health risks from the rice grains.


Subject(s)
Oryza , Bangladesh/epidemiology , Oryza/chemistry , Humans , Food Contamination/analysis , Carcinogens/analysis , Carcinogens/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Principal Component Analysis
10.
Mikrochim Acta ; 191(6): 331, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38744722

ABSTRACT

A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.


Subject(s)
Colorimetry , Limit of Detection , Metal-Organic Frameworks , Salmonella enterica , Colorimetry/methods , Salmonella enterica/isolation & purification , Salmonella enterica/chemistry , Metal-Organic Frameworks/chemistry , Food Microbiology/methods , Food Contamination/analysis , Peroxidase/chemistry
11.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691423

ABSTRACT

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Subject(s)
Allergens , Arachis , Peptides , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Arachis/chemistry , Arachis/immunology , Peptides/chemistry , Peptides/immunology , Allergens/analysis , Allergens/immunology , Allergens/chemistry , Biofouling/prevention & control , Food Contamination/analysis , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Adsorption
12.
J Agric Food Chem ; 72(19): 10753-10771, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38706131

ABSTRACT

Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.


Subject(s)
Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Humans , Food Contamination/analysis , Food Contamination/prevention & control , Antibodies, Neutralizing/immunology , Toxins, Biological/immunology , Foodborne Diseases/prevention & control , Foodborne Diseases/immunology , Camelus/immunology
13.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709728

ABSTRACT

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Subject(s)
Colorimetry , Food Contamination , Fungicides, Industrial , Pesticide Residues , Fungicides, Industrial/analysis , Food Contamination/analysis , Colorimetry/methods , Pesticide Residues/analysis , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Fluorescence , Triticum/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Limit of Detection , Flour/analysis
14.
Se Pu ; 42(5): 420-431, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736385

ABSTRACT

The consumption of poultry eggs has increased in recent years owing to the abundance of production and improvements in living standards. Thus, the safety requirements of poultry eggs have gradually increased. At present, few reports on analytical methods to determine banned veterinary drugs during egg-laying period in poultry eggs have been published. Therefore, establishing high-throughput and efficient screening methods to monitor banned veterinary drugs during egg-laying period is imperative. In this study, an analytical method based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with QuEChERS-based techniques was developed for the simultaneous determination of 31 banned veterinary drugs encompassing nine drug classes (macrolides, antipyretic and analgesic drugs, sulfonamides, antibacterial synergists, anticoccidials, antinematodes, quinolones, tetracyclines, amphenicols) in different types of poultry eggs. The main factors affecting the response, recovery, and sensitivity of the method, such as the extraction solvent, purification adsorbent, LC separation conditions, and MS/MS parameters, were optimized during sample pretreatment and instrumental analysis. The 31 veterinary drug residues in 2.00 g eggs were extracted with 2 mL of 0.1 mol/L ethylene diamine tetraacetic acid disodium solution and 8 mL 3% acetic acid acetonitrile solution, and salted out with 2 g of sodium chloride. After centrifugation, 5 mL of the supernatant was cleaned-up using the QuEChERS method with 100 mg of octadecylsilane-bonded silica gel (C18), 50 mg of N-propylethylenediamine (PSA), and 50 mg of NH2-based sorbents. After nitrogen blowing and redissolution, the 31 target analytes were separated on a Waters CORTECS UPLC C18 analytical chromatographic column (150 mm×2.1 mm, 1.8 µm) at a flow rate, column temperature, and injection volume of 0.4 mL/min, 30 ℃, and 5 µL, respectively. Among these analytes, 26 analytes were acquired in dynamic multiple reaction monitoring (MRM) mode under positive electrospray ionization (ESI+) conditions using (A) 5 mmol/L ammonium acetate (pH 4.5) and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-30%B; 2.0-7.5 min, 30%B-50%B; 7.5-10.0 min, 50%B; 10.0-10.1 min, 50%B-100%B; 10.1-12.0 min, 100%B; 12.0-12.1 min, 100%B-12%B; The five other target analytes were acquired in MRM mode under negative electrospray ionization (ESI-) conditions using (A) H2O and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-40%B; 2.0-6.0 min, 40%B-80%B; 6.0-6.1 min, 80%B-100%B; 6.1-8.0 min, 100%B; 8.0-8.1 min, 100%B-12%B. Matrix-matched external standard calibration was used for quantification. The results showed that all the compounds had good linear relationships within their respective ranges, with correlation coefficients of >0.99. The limits of detection (LODs) and quantitation (LOQs) were 0.3-3.0 µg/kg and 1.0-10.0 µg/kg, respectively. The average recoveries of the 31 banned veterinary drugs spiked at three levels (LOQ, maximum residue limit (MRL), and 2MRL) in poultry eggs ranged from 61.2% to 105.7%, and the relative standard deviations (RSDs) ranged from 1.8% to 17.6%. The developed method was used to detect and analyze banned veterinary drugs in 30 commercial poultry egg samples, including 20 eggs, 5 duck eggs, and 5 goose eggs. Enrofloxacin was detected in one egg with a content of 12.3 µg/kg. The proposed method is simple, economical, practical, and capable of the simultaneous determination of multiple classes of banned veterinary drugs in poultry eggs.


Subject(s)
Drug Residues , Eggs , Tandem Mass Spectrometry , Veterinary Drugs , Tandem Mass Spectrometry/methods , Animals , Veterinary Drugs/analysis , Eggs/analysis , Chromatography, High Pressure Liquid/methods , Drug Residues/analysis , Poultry , Food Contamination/analysis
15.
Se Pu ; 42(5): 445-451, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736387

ABSTRACT

Mycotoxins are toxic secondary metabolites produced by fungal species that can cause acute, subacute, and chronic toxicity in humans and animals. Thus, these toxins pose a significant threat to health and safety. Owing to the lack of effective antimold measures in the agricultural industry, feed ingredients such as corn, peanuts, wheat, barley, millet, nuts, oily feed, forage, and their byproducts are prone to mold and mycotoxin contamination, which can affect animal production, product quality, and safety. Cyclopiazonic acid (CPA), which is mainly biosynthesized from mevalonate, tryptophan, and diacetate units, is a myotoxic secondary metabolite produced by Penicillium and Aspergillus fungi. CPA is widely present as a copollutant with aflatoxins in various crops. Compared with some common mycotoxins such as aflatoxins, fumonisins, ochratoxins, zearalenones, and their metabolites, CPA has not been well investigated. In the United States, a survey showed that 51% of corn and 90% of peanut samples contained CPA, with a maximum level of 2.9 mg/kg. In Europe, CPA was found in Penicillium-contaminated cheeses as high as 4.0 mg/kg. Some studies have shown that CPA can cause irreversible damage to organs such as the liver and spleen in mice. Therefore, the establishment of a rapid and efficient analytical method for CPA is of great significance for the risk assessment of CPA in feeds, the development of standard limits, and the protection of feed product quality and safety. The QuEChERS method, a sample pretreatment method that is fast, simple, cheap, effective, and safe, is widely used in the analysis of pesticide residues in food. In this study, a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine CPA levels in feeds. The chromatographic separation and MS detection of CPA as well as the key factors affecting the extraction efficiency of CPA, including the type of extraction solvent, type of inorganic salt, and type and dosage of adsorbent, were optimized in detail. During the optimization of the chromatographic-separation step, the acid and salt concentrations of the mobile phase affected the separation and detection of CPA. During the optimization of the QuEChERS method, the addition of a certain amount of acetic acid improved the extraction efficiency of CPA because of its acidic nature; in addition, GCB and PSA significantly adsorbed CPA from the feed extract. Under optimal conditions, the CPA in the feed sample (1.0 g) was extracted with 2 mL of water and 4 mL of acetonitrile (ACN) containing 0.5% acetic acid. After salting out with 0.4 g of NaCl and 1.6 g of MgSO4, 1 mL of the ACN supernatant was purified by dispersive solid-phase extraction using 150 mg of MgSO4 and 50 mg of C18 and analyzed by UPLC-MS/MS. The sample was separated on a Waters HSS T3 column (100 mm×2.1 mm, 1.8 µm) using 2 mmol/L ammonium acetate aqueous solution with 0.5% formic acid and ACN as the mobile phases and then analyzed by positive electrospray ionization in multiple reaction monitoring mode. CPA exhibited good linearity in the range of 2-200 ng/mL, with a high correlation coefficient (r=0.9995). The limits of detection and quantification of CPA, which were calculated as 3 and 10 times the signal-to-noise ratio, respectively, were 0.6 and 2.0 µg/kg, respectively. The average recoveries in feed samples spiked with 10, 100, and 500 µg/kg CPA ranged from 70.1% to 78.5%, with an intra-day precision of less than 5.8% and an inter-day precision of less than 7.2%, indicating the good accuracy and precision of the proposed method. Finally, the modified QuEChERS-UPLC-MS/MS method was applied to the analysis of CPA in 10 feed samples obtained from Wuhan market. The analysis results indicated that the developed method has good applicability for CPA analysis in feed samples. In summary, an improved QuEChERS method was applied to the extraction and purification of CPA from feeds for the first time; this method provides a suitable analytical method for the risk monitoring, assessment, and standard-limit setting of CPA in feed samples.


Subject(s)
Animal Feed , Food Contamination , Indoles , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animal Feed/analysis , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Indoles/analysis , Mycotoxins/analysis
16.
Se Pu ; 42(5): 465-473, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736390

ABSTRACT

A method based on gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) coupled with one-step QuEChERS technique was developed for the simultaneous determination of 15 N-nitrosamines in air-dried yak meat. The hydration volume, extraction solvent, extracting salt, and cleaning material were optimized according to the characteristics of the N-nitrosamines and sample matrix. The optimized conditions were as follows: 10 mL of purified water for sample hydration, acetonitrile as the extraction solvent for the sample after hydration, 4.0 g of anhydrous MgSO4 and 1.0 g of NaCl as extracting salts, 500 mg of MgSO4+25 mg of C18+50 mg of PSA as cleaning materials. Favorable recoveries of the 15 N-nitrosamines were obtained when the extraction solution was incompletely dried. Thus, the final extract was dried to below 0.5 mL under a mild nitrogen stream and then redissolved to 0.5 mL with acetonitrile. After filtration, 200 µL of the sample was transferred to an autosampler vial for GC-MS/MS analysis. The 15 N-nitrosamines were determined using GC-MS/MS on a DB-HeavyWAX column (30 m×0.25 mm×0.25 µm) with an electron impact ion source in multiple-reaction monitoring (MRM) mode, and quantified using an external standard method. Under the optimized experimental conditions, the results showed that the calibration curves exhibited good linearities for the 15 N-nitrosamines, with correlation coefficients (r2) greater than 0.9990. The limits of detection (LODs) and the limits of quantification (LOQs) ranged from 0.05 to 0.20 µg/kg and from 0.10 to 0.50 µg/kg, respectively. At spiked levels of 1LOQ, 2LOQ, and 10LOQ, the average recoveries were 79.4%-102.1%, 80.6%-109.5%, and 83.0%-110.6%, respectively, and the relative standard deviations were in the range of 0.8%-16.0%. The low matrix effects of the 15 N-nitrosamines indicated the high sensitivity of the proposed method. The method was applied to detect representative commercial air-dried yak meat samples obtained using different processing techniques. Seven N-nitrosamines, including N-nitrosodimethylamine, N-nitrosodiisobutylamine, N-nitrosodibutylamine, N-methyl-N-phenylnitrous amide, N-ethyl-N-nitrosoaniline, N-nitrosopyrrolidine, and N-nitrosodiphenylamine were detected in all samples. The average contents of the seven N-nitrosamines was 0.08-20.18 µg/kg. The detection rates and average contents of the N-nitrosamines in cooked air-dried yak meat samples were higher than those in traditional raw air-dried yak meat samples. Compared with the manual QuEChERS method, the one-step QuEChERS method developed integrated the extraction and clean-up procedures into one single run, and the detection efficiency was considerably improved. The developed method is simple, rapid, highly sensitive, and insusceptible to human errors. Thus, it is useful for the determination of N-nitrosamines in air-dried yak meat and can be extended to the qualitative and quantitative analysis of N-nitrosamines in other meat products. It also provides method support and a data reference for the general determination of N-nitrosamines, which is of great significance for food safety.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Meat , Nitrosamines , Animals , Nitrosamines/analysis , Gas Chromatography-Mass Spectrometry/methods , Cattle , Food Contamination/analysis , Meat/analysis
17.
PLoS One ; 19(5): e0303040, 2024.
Article in English | MEDLINE | ID: mdl-38713652

ABSTRACT

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Subject(s)
Antioxidants , Germination , Glycine max , Melatonin , Nutritive Value , Pesticide Residues , Seeds , Melatonin/pharmacology , Germination/drug effects , Pesticide Residues/analysis , Seeds/drug effects , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Glycine max/chemistry , Antioxidants/metabolism , Edible Grain/drug effects , Edible Grain/metabolism , Phenols/analysis , Food Contamination/analysis , Glutathione/metabolism
18.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719408

ABSTRACT

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Subject(s)
Aptamers, Nucleotide , Gold , Machine Learning , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Aptamers, Nucleotide/chemistry , Silver/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Chloramphenicol/analysis , Estradiol/analysis , Biosensing Techniques/methods , Food Contamination/analysis , Limit of Detection
19.
Compr Rev Food Sci Food Saf ; 23(3): e13363, 2024 May.
Article in English | MEDLINE | ID: mdl-38720588

ABSTRACT

There is still considerable controversy about the relative risk of mycotoxin exposure associated with the consumption of organic and conventional cereals. Using validated protocols, we carried out a systematic literature review and meta-analyses of data on the incidence and concentrations of mycotoxins produced by Fusarium, Claviceps, Penicillium, and Aspergillus species in organic and conventional cereal grains/products. The standard weighted meta-analysis of concentration data detected a significant effect of production system (organic vs. conventional) only for the Fusarium mycotoxins deoxynivalenol, with concentrations ∼50% higher in conventional than organic cereal grains/products (p < 0.0001). Weighted meta-analyses of incidence data and unweighted meta-analyses of concentration data also detected small, but significant effects of production system on the incidence and/or concentrations of T-2/HT-2 toxins, zearalenone, enniatin, beauvericin, ochratoxin A (OTA), and aflatoxins. Multilevel meta-analyses identified climatic conditions, cereal species, study type, and analytical methods used as important confounding factors for the effects of production system. Overall, results from this study suggest that (i) Fusarium mycotoxin contamination decreased between the 1990s and 2020, (ii) contamination levels are similar in organic and conventional cereals used for human consumption, and (iii) maintaining OTA concentrations below the maximum contamination levels (3.0 µg/kg) set by the EU remains a major challenge.


Subject(s)
Edible Grain , Food Contamination , Mycotoxins , Edible Grain/chemistry , Edible Grain/microbiology , Mycotoxins/analysis , Food Contamination/analysis , Fusarium/chemistry , Food, Organic/analysis , Food, Organic/microbiology
20.
Compr Rev Food Sci Food Saf ; 23(3): e13348, 2024 May.
Article in English | MEDLINE | ID: mdl-38720587

ABSTRACT

Listeria monocytogenes biofilms formed on food-contact surfaces within food-processing facilities pose a significant challenge, serving as persistent sources of cross-contamination. In this review, we examined documented cases of foodborne outbreaks and recalls linked to L. monocytogenes contamination on equipment surfaces and in the food production environment, provided an overview of the prevalence and persistence of L. monocytogenes in different food-processing facilities, and discussed environmental factors influencing its biofilm formation. We further delved into antimicrobial interventions, such as chemical sanitizers, thermal treatments, biological control, physical treatment, and other approaches for controlling L. monocytogenes biofilms on food-contact surfaces. This review provides valuable insights into the persistent challenge of L. monocytogenes biofilms in food processing, offering a foundation for future research and practical strategies to enhance food safety.


Subject(s)
Biofilms , Food Microbiology , Listeria monocytogenes , Listeria monocytogenes/physiology , Biofilms/growth & development , Food Handling/methods , Food Contamination/prevention & control , Equipment Contamination/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...